spingle/source/r_part.c

1028 lines
22 KiB
C

/*
Copyright (C) 1996-2001 Id Software, Inc.
Copyright (C) 2002-2009 John Fitzgibbons and others
Copyright (C) 2007-2008 Kristian Duske
Copyright (C) 2010-2014 QuakeSpasm developers
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "q_defs.h"
#define MAX_PARTICLES 2048 // default max # of particles at one
// time
#define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's
// on the command line
int32_t ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61};
int32_t ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66};
int32_t ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3};
particle_t *active_particles, *free_particles, *particles;
vec3_t r_pright, r_pup, r_ppn;
int32_t r_numparticles;
gltexture_t *particletexture, *particletexture1, *particletexture2, *particletexture3, *particletexture4; //johnfitz
float texturescalefactor; //johnfitz -- compensate for apparent size of different particle textures
cvar_t r_particles = {"r_particles", "1", CVAR_ARCHIVE}; //johnfitz
cvar_t r_quadparticles = {"r_quadparticles", "1", CVAR_ARCHIVE}; //johnfitz
/*
===============
R_ParticleTextureLookup -- johnfitz -- generate nice antialiased 32x32 circle for particles
===============
*/
int32_t R_ParticleTextureLookup(int32_t x, int32_t y, int32_t sharpness)
{
int32_t r; //distance from point x,y to circle origin, squared
int32_t a; //alpha value to return
x -= 16;
y -= 16;
r = x * x + y * y;
r = r > 255 ? 255 : r;
a = sharpness * (255 - r);
a = q_min(a, 255);
return a;
}
/*
===============
R_InitParticleTextures -- johnfitz -- rewritten
===============
*/
void R_InitParticleTextures(void)
{
int32_t x, y;
static byte particle1_data[64 * 64 * 4];
static byte particle2_data[2 * 2 * 4];
static byte particle3_data[64 * 64 * 4];
byte *dst;
// particle texture 1 -- circle
dst = particle1_data;
for(x = 0 ; x < 64 ; x++)
for(y = 0 ; y < 64 ; y++)
{
*dst++ = 255;
*dst++ = 255;
*dst++ = 255;
*dst++ = R_ParticleTextureLookup(x, y, 8);
}
particletexture1 = TexMgr_LoadImage(NULL, "particle1", 64, 64, SRC_RGBA, particle1_data, "", (src_offset_t)particle1_data, TEXPREF_PERSIST | TEXPREF_ALPHA | TEXPREF_LINEAR);
// particle texture 2 -- square
dst = particle2_data;
for(x = 0 ; x < 2 ; x++)
for(y = 0 ; y < 2 ; y++)
{
*dst++ = 255;
*dst++ = 255;
*dst++ = 255;
*dst++ = x || y ? 0 : 255;
}
particletexture2 = TexMgr_LoadImage(NULL, "particle2", 2, 2, SRC_RGBA, particle2_data, "", (src_offset_t)particle2_data, TEXPREF_PERSIST | TEXPREF_ALPHA | TEXPREF_NEAREST);
// particle texture 3 -- blob
dst = particle3_data;
for(x = 0 ; x < 64 ; x++)
for(y = 0 ; y < 64 ; y++)
{
*dst++ = 255;
*dst++ = 255;
*dst++ = 255;
*dst++ = R_ParticleTextureLookup(x, y, 2);
}
particletexture3 = TexMgr_LoadImage(NULL, "particle3", 64, 64, SRC_RGBA, particle3_data, "", (src_offset_t)particle3_data, TEXPREF_PERSIST | TEXPREF_ALPHA | TEXPREF_LINEAR);
//set default
particletexture = particletexture1;
texturescalefactor = 1.27;
}
/*
===============
R_SetParticleTexture_f -- johnfitz
===============
*/
static void R_SetParticleTexture_f(cvar_t *var)
{
(void)var;
switch((int32_t)(r_particles.value))
{
case 1:
particletexture = particletexture1;
texturescalefactor = 1.27;
break;
case 2:
particletexture = particletexture2;
texturescalefactor = 1.0;
break;
// case 3:
// particletexture = particletexture3;
// texturescalefactor = 1.5;
// break;
}
}
/*
===============
R_InitParticles
===============
*/
void R_InitParticles(void)
{
int32_t i;
i = COM_CheckParm("-particles");
if(i)
{
r_numparticles = (int32_t)(atoi(com_argv[i + 1]));
if(r_numparticles < ABSOLUTE_MIN_PARTICLES)
r_numparticles = ABSOLUTE_MIN_PARTICLES;
}
else
{
r_numparticles = MAX_PARTICLES;
}
particles = (particle_t *)
Hunk_AllocName(r_numparticles * sizeof(particle_t), "particles");
Cvar_RegisterVariable(&r_particles); //johnfitz
Cvar_SetCallback(&r_particles, R_SetParticleTexture_f);
Cvar_RegisterVariable(&r_quadparticles); //johnfitz
R_InitParticleTextures(); //johnfitz
}
/*
===============
R_EntityParticles
===============
*/
#define NUMVERTEXNORMALS 162
extern float r_avertexnormals[NUMVERTEXNORMALS][3];
vec3_t avelocities[NUMVERTEXNORMALS];
float beamlength = 16;
vec3_t avelocity = {23, 7, 3};
float partstep = 0.01;
float timescale = 0.01;
void R_EntityParticles(entity_t *ent)
{
int32_t i;
particle_t *p;
float angle;
float sp, sy, cp, cy;
// float sr, cr;
// int32_t count;
vec3_t forward;
float dist;
dist = 64;
// count = 50;
if(!avelocities[0][0])
{
for(i = 0; i < NUMVERTEXNORMALS; i++)
{
avelocities[i][0] = (rand() & 255) * 0.01;
avelocities[i][1] = (rand() & 255) * 0.01;
avelocities[i][2] = (rand() & 255) * 0.01;
}
}
for(i = 0; i < NUMVERTEXNORMALS; i++)
{
angle = cl.time * avelocities[i][0];
sy = sin(angle);
cy = cos(angle);
angle = cl.time * avelocities[i][1];
sp = sin(angle);
cp = cos(angle);
angle = cl.time * avelocities[i][2];
// sr = sin(angle);
// cr = cos(angle);
forward[0] = cp * cy;
forward[1] = cp * sy;
forward[2] = -sp;
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.01;
p->color = 0x6f;
p->type = pt_explode;
p->org[0] = ent->origin[0] + r_avertexnormals[i][0] * dist + forward[0] * beamlength;
p->org[1] = ent->origin[1] + r_avertexnormals[i][1] * dist + forward[1] * beamlength;
p->org[2] = ent->origin[2] + r_avertexnormals[i][2] * dist + forward[2] * beamlength;
}
}
/*
===============
R_ClearParticles
===============
*/
void R_ClearParticles(void)
{
int32_t i;
free_particles = &particles[0];
active_particles = NULL;
for(i = 0 ; i < r_numparticles ; i++)
particles[i].next = &particles[i + 1];
particles[r_numparticles - 1].next = NULL;
}
/*
===============
R_ReadPointFile_f
===============
*/
void R_ReadPointFile_f(void)
{
FILE *f;
vec3_t org;
int32_t r;
int32_t c;
particle_t *p;
char name[MAX_QPATH];
if(cls.state != ca_connected)
return; // need an active map.
q_snprintf(name, sizeof(name), "maps/%s.pts", cl.mapname);
COM_FOpenFile(name, &f, NULL);
if(!f)
{
Con_Printf("couldn't open %s\n", name);
return;
}
Con_Printf("Reading %s...\n", name);
c = 0;
org[0] = org[1] = org[2] = 0; // silence pesky compiler warnings
for(;;)
{
r = fscanf(f, "%f %f %f\n", &org[0], &org[1], &org[2]);
if(r != 3)
break;
c++;
if(!free_particles)
{
Con_Printf("Not enough free particles\n");
break;
}
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = 99999;
p->color = (-c) & 15;
p->type = pt_static;
VectorCopy(vec3_origin, p->vel);
VectorCopy(org, p->org);
}
fclose(f);
Con_Printf("%" PRIi32 " points read\n", c);
}
/*
===============
R_ParseParticleEffect
Parse an effect out of the server message
===============
*/
void R_ParseParticleEffect(void)
{
vec3_t org, dir;
int32_t i, count, msgcount, color;
for(i = 0 ; i < 3 ; i++)
org[i] = MSG_ReadCoord(cl.protocolflags);
for(i = 0 ; i < 3 ; i++)
dir[i] = MSG_ReadChar() * (1.0 / 16);
msgcount = MSG_ReadByte();
color = MSG_ReadByte();
if(msgcount == 255)
count = 1024;
else
count = msgcount;
R_RunParticleEffect(org, dir, color, count);
}
/*
===============
R_ParticleExplosion
===============
*/
void R_ParticleExplosion(vec3_t org)
{
int32_t i, j;
particle_t *p;
for(i = 0 ; i < 1024 ; i++)
{
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand() & 3;
if(i & 1)
{
p->type = pt_explode;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_explode2;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
}
}
/*
===============
R_ParticleExplosion2
===============
*/
void R_ParticleExplosion2(vec3_t org, int32_t colorStart, int32_t colorLength)
{
int32_t i, j;
particle_t *p;
int32_t colorMod = 0;
for(i = 0; i < 512; i++)
{
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.3;
p->color = colorStart + (colorMod % colorLength);
colorMod++;
p->type = pt_blob;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
}
/*
===============
R_BlobExplosion
===============
*/
void R_BlobExplosion(vec3_t org)
{
int32_t i, j;
particle_t *p;
for(i = 0 ; i < 1024 ; i++)
{
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 1 + (rand() & 8) * 0.05;
if(i & 1)
{
p->type = pt_blob;
p->color = 66 + rand() % 6;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_blob2;
p->color = 150 + rand() % 6;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
}
}
/*
===============
R_RunParticleEffect
===============
*/
void R_RunParticleEffect(vec3_t org, vec3_t dir, int32_t color, int32_t count)
{
int32_t i, j;
particle_t *p;
for(i = 0 ; i < count ; i++)
{
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
if(count == 1024)
{
// rocket explosion
p->die = cl.time + 5;
p->color = ramp1[0];
p->ramp = rand() & 3;
if(i & 1)
{
p->type = pt_explode;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
else
{
p->type = pt_explode2;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() % 32) - 16);
p->vel[j] = (rand() % 512) - 256;
}
}
}
else
{
p->die = cl.time + 0.1 * (rand() % 5);
p->color = (color & ~7) + (rand() & 7);
p->type = pt_slowgrav;
for(j = 0 ; j < 3 ; j++)
{
p->org[j] = org[j] + ((rand() & 15) - 8);
p->vel[j] = dir[j] * 15; // + (rand()%300)-150;
}
}
}
}
/*
===============
R_LavaSplash
===============
*/
void R_LavaSplash(vec3_t org)
{
int32_t i, j, k;
particle_t *p;
float vel;
vec3_t dir;
for(i = -16 ; i < 16 ; i++)
for(j = -16 ; j < 16 ; j++)
for(k = 0 ; k < 1 ; k++)
{
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 2 + (rand() & 31) * 0.02;
p->color = 224 + (rand() & 7);
p->type = pt_slowgrav;
dir[0] = j * 8 + (rand() & 7);
dir[1] = i * 8 + (rand() & 7);
dir[2] = 256;
p->org[0] = org[0] + dir[0];
p->org[1] = org[1] + dir[1];
p->org[2] = org[2] + (rand() & 63);
VectorNormalize(dir);
vel = 50 + (rand() & 63);
VectorScale(dir, vel, p->vel);
}
}
/*
===============
R_TeleportSplash
===============
*/
void R_TeleportSplash(vec3_t org)
{
int32_t i, j, k;
particle_t *p;
float vel;
vec3_t dir;
for(i = -16 ; i < 16 ; i += 4)
for(j = -16 ; j < 16 ; j += 4)
for(k = -24 ; k < 32 ; k += 4)
{
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
p->die = cl.time + 0.2 + (rand() & 7) * 0.02;
p->color = 7 + (rand() & 7);
p->type = pt_slowgrav;
dir[0] = j * 8;
dir[1] = i * 8;
dir[2] = k * 8;
p->org[0] = org[0] + i + (rand() & 3);
p->org[1] = org[1] + j + (rand() & 3);
p->org[2] = org[2] + k + (rand() & 3);
VectorNormalize(dir);
vel = 50 + (rand() & 63);
VectorScale(dir, vel, p->vel);
}
}
/*
===============
R_RocketTrail
FIXME -- rename function and use #defined types instead of numbers
===============
*/
void R_RocketTrail(vec3_t start, vec3_t end, int32_t type)
{
vec3_t vec;
float len;
int32_t j;
particle_t *p;
int32_t dec;
static int32_t tracercount;
VectorSubtract(end, start, vec);
len = VectorNormalize(vec);
if(type < 128)
dec = 3;
else
{
dec = 1;
type -= 128;
}
while(len > 0)
{
len -= dec;
if(!free_particles)
return;
p = free_particles;
free_particles = p->next;
p->next = active_particles;
active_particles = p;
VectorCopy(vec3_origin, p->vel);
p->die = cl.time + 2;
switch(type)
{
case 0: // rocket trail
p->ramp = (rand() & 3);
p->color = ramp3[(int32_t)p->ramp];
p->type = pt_fire;
for(j = 0 ; j < 3 ; j++)
p->org[j] = start[j] + ((rand() % 6) - 3);
break;
case 1: // smoke smoke
p->ramp = (rand() & 3) + 2;
p->color = ramp3[(int32_t)p->ramp];
p->type = pt_fire;
for(j = 0 ; j < 3 ; j++)
p->org[j] = start[j] + ((rand() % 6) - 3);
break;
case 2: // blood
p->type = pt_grav;
p->color = 67 + (rand() & 3);
for(j = 0 ; j < 3 ; j++)
p->org[j] = start[j] + ((rand() % 6) - 3);
break;
case 3:
case 5: // tracer
p->die = cl.time + 0.5;
p->type = pt_static;
if(type == 3)
p->color = 52 + ((tracercount & 4) << 1);
else
p->color = 230 + ((tracercount & 4) << 1);
tracercount++;
VectorCopy(start, p->org);
if(tracercount & 1)
{
p->vel[0] = 30 * vec[1];
p->vel[1] = 30 * -vec[0];
}
else
{
p->vel[0] = 30 * -vec[1];
p->vel[1] = 30 * vec[0];
}
break;
case 4: // slight blood
p->type = pt_grav;
p->color = 67 + (rand() & 3);
for(j = 0 ; j < 3 ; j++)
p->org[j] = start[j] + ((rand() % 6) - 3);
len -= 3;
break;
case 6: // voor trail
p->color = 9 * 16 + 8 + (rand() & 3);
p->type = pt_static;
p->die = cl.time + 0.3;
for(j = 0 ; j < 3 ; j++)
p->org[j] = start[j] + ((rand() & 15) - 8);
break;
}
VectorAdd(start, vec, start);
}
}
/*
===============
CL_RunParticles -- johnfitz -- all the particle behavior, separated from R_DrawParticles
===============
*/
void CL_RunParticles(void)
{
particle_t *p, *kill;
int32_t i;
float time1, time2, time3, dvel, frametime, grav;
extern cvar_t sv_gravity;
frametime = cl.time - cl.oldtime;
time3 = frametime * 15;
time2 = frametime * 10;
time1 = frametime * 5;
grav = frametime * sv_gravity.value * 0.05;
dvel = 4 * frametime;
for(;;)
{
kill = active_particles;
if(kill && kill->die < cl.time)
{
active_particles = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
for(p = active_particles ; p ; p = p->next)
{
for(;;)
{
kill = p->next;
if(kill && kill->die < cl.time)
{
p->next = kill->next;
kill->next = free_particles;
free_particles = kill;
continue;
}
break;
}
p->org[0] += p->vel[0] * frametime;
p->org[1] += p->vel[1] * frametime;
p->org[2] += p->vel[2] * frametime;
switch(p->type)
{
case pt_static:
break;
case pt_fire:
p->ramp += time1;
if(p->ramp >= 6)
p->die = -1;
else
p->color = ramp3[(int32_t)p->ramp];
p->vel[2] += grav;
break;
case pt_explode:
p->ramp += time2;
if(p->ramp >= 8)
p->die = -1;
else
p->color = ramp1[(int32_t)p->ramp];
for(i = 0 ; i < 3 ; i++)
p->vel[i] += p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_explode2:
p->ramp += time3;
if(p->ramp >= 8)
p->die = -1;
else
p->color = ramp2[(int32_t)p->ramp];
for(i = 0 ; i < 3 ; i++)
p->vel[i] -= p->vel[i] * frametime;
p->vel[2] -= grav;
break;
case pt_blob:
for(i = 0 ; i < 3 ; i++)
p->vel[i] += p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_blob2:
for(i = 0 ; i < 2 ; i++)
p->vel[i] -= p->vel[i] * dvel;
p->vel[2] -= grav;
break;
case pt_grav:
case pt_slowgrav:
p->vel[2] -= grav;
break;
}
}
}
/*
===============
R_DrawParticles -- johnfitz -- moved all non-drawing code to CL_RunParticles
===============
*/
void R_DrawParticles(void)
{
particle_t *p;
float scale;
vec3_t up, right, p_up, p_right, p_upright; //johnfitz -- p_ vectors
GLubyte color[4], *c; //johnfitz -- particle transparency
extern cvar_t r_particles; //johnfitz
//float alpha; //johnfitz -- particle transparency
if(!r_particles.value)
return;
//ericw -- avoid empty glBegin(),glEnd() pair below; causes issues on AMD
if(!active_particles)
return;
VectorScale(vup, 1.5, up);
VectorScale(vright, 1.5, right);
GL_Bind(particletexture);
glEnable(GL_BLEND);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glDepthMask(GL_FALSE); //johnfitz -- fix for particle z-buffer bug
if(r_quadparticles.value) //johnitz -- quads save fillrate
{
glBegin(GL_QUADS);
for(p = active_particles ; p ; p = p->next)
{
// hack a scale up to keep particles from disapearing
scale = (p->org[0] - r_origin[0]) * vpn[0]
+ (p->org[1] - r_origin[1]) * vpn[1]
+ (p->org[2] - r_origin[2]) * vpn[2];
if(scale < 20)
scale = 1 + 0.08; //johnfitz -- added .08 to be consistent
else
scale = 1 + scale * 0.004;
scale /= 2.0; //quad is half the size of triangle
scale *= texturescalefactor; //johnfitz -- compensate for apparent size of different particle textures
//johnfitz -- particle transparency and fade out
c = (GLubyte *) &d_8to24table[(int32_t)p->color];
color[0] = c[0];
color[1] = c[1];
color[2] = c[2];
//alpha = CLAMP(0, p->die + 0.5 - cl.time, 1);
color[3] = 255; //(int32_t)(alpha * 255);
glColor4ubv(color);
//johnfitz
glTexCoord2f(0, 0);
glVertex3fv(p->org);
glTexCoord2f(0.5, 0);
VectorMA(p->org, scale, up, p_up);
glVertex3fv(p_up);
glTexCoord2f(0.5, 0.5);
VectorMA(p_up, scale, right, p_upright);
glVertex3fv(p_upright);
glTexCoord2f(0, 0.5);
VectorMA(p->org, scale, right, p_right);
glVertex3fv(p_right);
rs_particles++; //johnfitz //FIXME: just use r_numparticles
}
glEnd();
}
else //johnitz -- triangles save verts
{
glBegin(GL_TRIANGLES);
for(p = active_particles ; p ; p = p->next)
{
// hack a scale up to keep particles from disapearing
scale = (p->org[0] - r_origin[0]) * vpn[0]
+ (p->org[1] - r_origin[1]) * vpn[1]
+ (p->org[2] - r_origin[2]) * vpn[2];
if(scale < 20)
scale = 1 + 0.08; //johnfitz -- added .08 to be consistent
else
scale = 1 + scale * 0.004;
scale *= texturescalefactor; //johnfitz -- compensate for apparent size of different particle textures
//johnfitz -- particle transparency and fade out
c = (GLubyte *) &d_8to24table[(int32_t)p->color];
color[0] = c[0];
color[1] = c[1];
color[2] = c[2];
//alpha = CLAMP(0, p->die + 0.5 - cl.time, 1);
color[3] = 255; //(int32_t)(alpha * 255);
glColor4ubv(color);
//johnfitz
glTexCoord2f(0, 0);
glVertex3fv(p->org);
glTexCoord2f(1, 0);
VectorMA(p->org, scale, up, p_up);
glVertex3fv(p_up);
glTexCoord2f(0, 1);
VectorMA(p->org, scale, right, p_right);
glVertex3fv(p_right);
rs_particles++; //johnfitz //FIXME: just use r_numparticles
}
glEnd();
}
glDepthMask(GL_TRUE); //johnfitz -- fix for particle z-buffer bug
glDisable(GL_BLEND);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glColor3f(1, 1, 1);
}
/*
===============
R_DrawParticles_ShowTris -- johnfitz
===============
*/
void R_DrawParticles_ShowTris(void)
{
particle_t *p;
float scale;
vec3_t up, right, p_up, p_right, p_upright;
extern cvar_t r_particles;
if(!r_particles.value)
return;
VectorScale(vup, 1.5, up);
VectorScale(vright, 1.5, right);
if(r_quadparticles.value)
{
for(p = active_particles ; p ; p = p->next)
{
glBegin(GL_TRIANGLE_FAN);
// hack a scale up to keep particles from disapearing
scale = (p->org[0] - r_origin[0]) * vpn[0]
+ (p->org[1] - r_origin[1]) * vpn[1]
+ (p->org[2] - r_origin[2]) * vpn[2];
if(scale < 20)
scale = 1 + 0.08; //johnfitz -- added .08 to be consistent
else
scale = 1 + scale * 0.004;
scale /= 2.0; //quad is half the size of triangle
scale *= texturescalefactor; //compensate for apparent size of different particle textures
glVertex3fv(p->org);
VectorMA(p->org, scale, up, p_up);
glVertex3fv(p_up);
VectorMA(p_up, scale, right, p_upright);
glVertex3fv(p_upright);
VectorMA(p->org, scale, right, p_right);
glVertex3fv(p_right);
glEnd();
}
}
else
{
glBegin(GL_TRIANGLES);
for(p = active_particles ; p ; p = p->next)
{
// hack a scale up to keep particles from disapearing
scale = (p->org[0] - r_origin[0]) * vpn[0]
+ (p->org[1] - r_origin[1]) * vpn[1]
+ (p->org[2] - r_origin[2]) * vpn[2];
if(scale < 20)
scale = 1 + 0.08; //johnfitz -- added .08 to be consistent
else
scale = 1 + scale * 0.004;
scale *= texturescalefactor; //compensate for apparent size of different particle textures
glVertex3fv(p->org);
VectorMA(p->org, scale, up, p_up);
glVertex3fv(p_up);
VectorMA(p->org, scale, right, p_right);
glVertex3fv(p_right);
}
glEnd();
}
}