/* Copyright (C) 1996-2001 Id Software, Inc. Copyright (C) 2002-2009 John Fitzgibbons and others Copyright (C) 2007-2008 Kristian Duske Copyright (C) 2010-2014 QuakeSpasm developers This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // mathlib.c -- math primitives #include "q_defs.h" vec3_t vec3_origin = {0, 0, 0}; /*-----------------------------------------------------------------*/ #define DEG2RAD( a ) ( (a) * PI_DIV_180 ) //johnfitz void ProjectPointOnPlane(vec3_t dst, const vec3_t p, const vec3_t normal) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct(normal, normal); d = DotProduct(normal, p) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ** assumes "src" is normalized */ void PerpendicularVector(vec3_t dst, const vec3_t src) { int32_t pos; int32_t i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector */ for(pos = 0, i = 0; i < 3; i++) { if(fabs(src[i]) < minelem) { pos = i; minelem = fabs(src[i]); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane(dst, tempvec, src); /* ** normalize the result */ VectorNormalize(dst); } //johnfitz -- removed RotatePointAroundVector() becuase it's no longer used and my compiler fucked it up anyway /*-----------------------------------------------------------------*/ float anglemod(float a) { #if 0 if(a >= 0) a -= 360 * (int32_t)(a / 360); else a += 360 * (1 + (int32_t)(-a / 360)); #endif a = (360.0 / 65536) * ((int32_t)(a * (65536 / 360.0)) & 65535); return a; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 ================== */ int32_t BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, mplane_t *p) { float dist1, dist2; int32_t sides; #if 0 // this is done by the BOX_ON_PLANE_SIDE macro before calling this // function // fast axial cases if(p->type < 3) { if(p->dist <= emins[p->type]) return 1; if(p->dist >= emaxs[p->type]) return 2; return 3; } #endif // general case switch(p->signbits) { case 0: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 1: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 2: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 3: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 4: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 5: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 6: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; case 7: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler Sys_Error("BoxOnPlaneSide: Bad signbits"); break; } #if 0 int32_t i; vec3_t corners[2]; for(i = 0 ; i < 3 ; i++) { if(plane->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist = DotProduct(plane->normal, corners[0]) - plane->dist; dist2 = DotProduct(plane->normal, corners[1]) - plane->dist; sides = 0; if(dist1 >= 0) sides = 1; if(dist2 < 0) sides |= 2; #endif sides = 0; if(dist1 >= p->dist) sides = 1; if(dist2 < p->dist) sides |= 2; #if defined(PARANOID) if(sides == 0) Sys_Error("BoxOnPlaneSide: sides==0"); #endif return sides; } //johnfitz -- the opposite of AngleVectors. this takes forward and generates pitch yaw roll //TODO: take right and up vectors to properly set yaw and roll void VectorAngles(const vec3_t forward, vec3_t angles) { vec3_t temp; temp[0] = forward[0]; temp[1] = forward[1]; temp[2] = 0; angles[PITCH] = -atan2(forward[2], VectorLength(temp)) / PI_DIV_180; angles[YAW] = atan2(forward[1], forward[0]) / PI_DIV_180; angles[ROLL] = 0; } void AngleVectors(vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (PI * 2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (PI * 2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (PI * 2 / 360); sr = sin(angle); cr = cos(angle); forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; right[0] = (-1 * sr * sp * cy + -1 * cr * -sy); right[1] = (-1 * sr * sp * sy + -1 * cr * cy); right[2] = -1 * sr * cp; up[0] = (cr * sp * cy + -sr * -sy); up[1] = (cr * sp * sy + -sr * cy); up[2] = cr * cp; } int32_t VectorCompare(vec3_t v1, vec3_t v2) { int32_t i; for(i = 0 ; i < 3 ; i++) if(v1[i] != v2[i]) return 0; return 1; } void VectorMA(vec3_t veca, float scale, vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale * vecb[0]; vecc[1] = veca[1] + scale * vecb[1]; vecc[2] = veca[2] + scale * vecb[2]; } vec_t _DotProduct(vec3_t v1, vec3_t v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } void _VectorSubtract(vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0] - vecb[0]; out[1] = veca[1] - vecb[1]; out[2] = veca[2] - vecb[2]; } void _VectorAdd(vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0] + vecb[0]; out[1] = veca[1] + vecb[1]; out[2] = veca[2] + vecb[2]; } void _VectorCopy(vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct(vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1] * v2[2] - v1[2] * v2[1]; cross[1] = v1[2] * v2[0] - v1[0] * v2[2]; cross[2] = v1[0] * v2[1] - v1[1] * v2[0]; } vec_t VectorLength(vec3_t v) { return sqrt(DotProduct(v, v)); } float VectorNormalize(vec3_t v) { float length, ilength; length = sqrt(DotProduct(v, v)); if(length) { ilength = 1 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorInverse(vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale(vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0] * scale; out[1] = in[1] * scale; out[2] = in[2] * scale; } int32_t Q_log2(int32_t val) { int32_t answer = 0; while(val >>= 1) answer++; return answer; } /* ================ R_ConcatRotations ================ */ void R_ConcatRotations(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } /* ================ R_ConcatTransforms ================ */ void R_ConcatTransforms(float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } /* =================== FloorDivMod Returns mathematically correct (floor-based) quotient and remainder for numer and denom, both of which should contain no fractional part. The quotient must fit in 32 bits. ==================== */ void FloorDivMod(double numer, double denom, int32_t *quotient, int32_t *rem) { int32_t q, r; double x; #if !defined(PARANOID) if(denom <= 0.0) Sys_Error("FloorDivMod: bad denominator %f\n", denom); // if ((floor(numer) != numer) || (floor(denom) != denom)) // Sys_Error ("FloorDivMod: non-integer numer or denom %f %f\n", // numer, denom); #endif if(numer >= 0.0) { x = floor(numer / denom); q = (int32_t)x; r = (int32_t)floor(numer - (x * denom)); } else { // // perform operations with positive values, and fix mod to make floor-based // x = floor(-numer / denom); q = -(int32_t)x; r = (int32_t)floor(-numer - (x * denom)); if(r != 0) { q--; r = (int32_t)denom - r; } } *quotient = q; *rem = r; } /* =================== GreatestCommonDivisor ==================== */ int32_t GreatestCommonDivisor(int32_t i1, int32_t i2) { if(i1 > i2) { if(i2 == 0) return (i1); return GreatestCommonDivisor(i2, i1 % i2); } else { if(i1 == 0) return (i2); return GreatestCommonDivisor(i1, i2 % i1); } }