/* Copyright (C) 1996-2001 Id Software, Inc. Copyright (C) 2002-2009 John Fitzgibbons and others Copyright (C) 2007-2008 Kristian Duske Copyright (C) 2010-2014 QuakeSpasm developers This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "q_defs.h" #define MAX_PARTICLES 2048 // default max # of particles at one // time #define ABSOLUTE_MIN_PARTICLES 512 // no fewer than this no matter what's // on the command line int32_t ramp1[8] = {0x6f, 0x6d, 0x6b, 0x69, 0x67, 0x65, 0x63, 0x61}; int32_t ramp2[8] = {0x6f, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x68, 0x66}; int32_t ramp3[8] = {0x6d, 0x6b, 6, 5, 4, 3}; particle_t *active_particles, *free_particles, *particles; vec3_t r_pright, r_pup, r_ppn; int32_t r_numparticles; gltexture_t *particletexture, *particletexture1, *particletexture2, *particletexture3, *particletexture4; //johnfitz float texturescalefactor; //johnfitz -- compensate for apparent size of different particle textures cvar_t r_particles = {"r_particles", "1", CVAR_ARCHIVE}; //johnfitz cvar_t r_quadparticles = {"r_quadparticles", "1", CVAR_ARCHIVE}; //johnfitz /* =============== R_ParticleTextureLookup -- johnfitz -- generate nice antialiased 32x32 circle for particles =============== */ int32_t R_ParticleTextureLookup(int32_t x, int32_t y, int32_t sharpness) { int32_t r; //distance from point x,y to circle origin, squared int32_t a; //alpha value to return x -= 16; y -= 16; r = x * x + y * y; r = r > 255 ? 255 : r; a = sharpness * (255 - r); a = q_min(a, 255); return a; } /* =============== R_InitParticleTextures -- johnfitz -- rewritten =============== */ void R_InitParticleTextures(void) { int32_t x, y; static byte particle1_data[64 * 64 * 4]; static byte particle2_data[2 * 2 * 4]; static byte particle3_data[64 * 64 * 4]; byte *dst; // particle texture 1 -- circle dst = particle1_data; for(x = 0 ; x < 64 ; x++) for(y = 0 ; y < 64 ; y++) { *dst++ = 255; *dst++ = 255; *dst++ = 255; *dst++ = R_ParticleTextureLookup(x, y, 8); } particletexture1 = TexMgr_LoadImage(NULL, "particle1", 64, 64, SRC_RGBA, particle1_data, "", (src_offset_t)particle1_data, TEXPREF_PERSIST | TEXPREF_ALPHA | TEXPREF_LINEAR); // particle texture 2 -- square dst = particle2_data; for(x = 0 ; x < 2 ; x++) for(y = 0 ; y < 2 ; y++) { *dst++ = 255; *dst++ = 255; *dst++ = 255; *dst++ = x || y ? 0 : 255; } particletexture2 = TexMgr_LoadImage(NULL, "particle2", 2, 2, SRC_RGBA, particle2_data, "", (src_offset_t)particle2_data, TEXPREF_PERSIST | TEXPREF_ALPHA | TEXPREF_NEAREST); // particle texture 3 -- blob dst = particle3_data; for(x = 0 ; x < 64 ; x++) for(y = 0 ; y < 64 ; y++) { *dst++ = 255; *dst++ = 255; *dst++ = 255; *dst++ = R_ParticleTextureLookup(x, y, 2); } particletexture3 = TexMgr_LoadImage(NULL, "particle3", 64, 64, SRC_RGBA, particle3_data, "", (src_offset_t)particle3_data, TEXPREF_PERSIST | TEXPREF_ALPHA | TEXPREF_LINEAR); //set default particletexture = particletexture1; texturescalefactor = 1.27; } /* =============== R_SetParticleTexture_f -- johnfitz =============== */ static void R_SetParticleTexture_f(cvar_t *var) { (void)var; switch((int32_t)(r_particles.value)) { case 1: particletexture = particletexture1; texturescalefactor = 1.27; break; case 2: particletexture = particletexture2; texturescalefactor = 1.0; break; // case 3: // particletexture = particletexture3; // texturescalefactor = 1.5; // break; } } /* =============== R_InitParticles =============== */ void R_InitParticles(void) { int32_t i; i = COM_CheckParm("-particles"); if(i) { r_numparticles = (int32_t)(atoi(com_argv[i + 1])); if(r_numparticles < ABSOLUTE_MIN_PARTICLES) r_numparticles = ABSOLUTE_MIN_PARTICLES; } else { r_numparticles = MAX_PARTICLES; } particles = (particle_t *) Hunk_AllocName(r_numparticles * sizeof(particle_t), "particles"); Cvar_RegisterVariable(&r_particles); //johnfitz Cvar_SetCallback(&r_particles, R_SetParticleTexture_f); Cvar_RegisterVariable(&r_quadparticles); //johnfitz R_InitParticleTextures(); //johnfitz } /* =============== R_EntityParticles =============== */ #define NUMVERTEXNORMALS 162 extern float r_avertexnormals[NUMVERTEXNORMALS][3]; vec3_t avelocities[NUMVERTEXNORMALS]; float beamlength = 16; vec3_t avelocity = {23, 7, 3}; float partstep = 0.01; float timescale = 0.01; void R_EntityParticles(entity_t *ent) { int32_t i; particle_t *p; float angle; float sp, sy, cp, cy; // float sr, cr; // int32_t count; vec3_t forward; float dist; dist = 64; // count = 50; if(!avelocities[0][0]) { for(i = 0; i < NUMVERTEXNORMALS; i++) { avelocities[i][0] = (rand() & 255) * 0.01; avelocities[i][1] = (rand() & 255) * 0.01; avelocities[i][2] = (rand() & 255) * 0.01; } } for(i = 0; i < NUMVERTEXNORMALS; i++) { angle = cl.time * avelocities[i][0]; sy = sin(angle); cy = cos(angle); angle = cl.time * avelocities[i][1]; sp = sin(angle); cp = cos(angle); angle = cl.time * avelocities[i][2]; // sr = sin(angle); // cr = cos(angle); forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.01; p->color = 0x6f; p->type = pt_explode; p->org[0] = ent->origin[0] + r_avertexnormals[i][0] * dist + forward[0] * beamlength; p->org[1] = ent->origin[1] + r_avertexnormals[i][1] * dist + forward[1] * beamlength; p->org[2] = ent->origin[2] + r_avertexnormals[i][2] * dist + forward[2] * beamlength; } } /* =============== R_ClearParticles =============== */ void R_ClearParticles(void) { int32_t i; free_particles = &particles[0]; active_particles = NULL; for(i = 0 ; i < r_numparticles ; i++) particles[i].next = &particles[i + 1]; particles[r_numparticles - 1].next = NULL; } /* =============== R_ReadPointFile_f =============== */ void R_ReadPointFile_f(void) { FILE *f; vec3_t org; int32_t r; int32_t c; particle_t *p; char name[MAX_QPATH]; if(cls.state != ca_connected) return; // need an active map. q_snprintf(name, sizeof(name), "maps/%s.pts", cl.mapname); COM_FOpenFile(name, &f, NULL); if(!f) { Con_Printf("couldn't open %s\n", name); return; } Con_Printf("Reading %s...\n", name); c = 0; org[0] = org[1] = org[2] = 0; // silence pesky compiler warnings for(;;) { r = fscanf(f, "%f %f %f\n", &org[0], &org[1], &org[2]); if(r != 3) break; c++; if(!free_particles) { Con_Printf("Not enough free particles\n"); break; } p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = 99999; p->color = (-c) & 15; p->type = pt_static; VectorCopy(vec3_origin, p->vel); VectorCopy(org, p->org); } fclose(f); Con_Printf("%" PRIi32 " points read\n", c); } /* =============== R_ParseParticleEffect Parse an effect out of the server message =============== */ void R_ParseParticleEffect(void) { vec3_t org, dir; int32_t i, count, msgcount, color; for(i = 0 ; i < 3 ; i++) org[i] = MSG_ReadCoord(cl.protocolflags); for(i = 0 ; i < 3 ; i++) dir[i] = MSG_ReadChar() * (1.0 / 16); msgcount = MSG_ReadByte(); color = MSG_ReadByte(); if(msgcount == 255) count = 1024; else count = msgcount; R_RunParticleEffect(org, dir, color, count); } /* =============== R_ParticleExplosion =============== */ void R_ParticleExplosion(vec3_t org) { int32_t i, j; particle_t *p; for(i = 0 ; i < 1024 ; i++) { if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 5; p->color = ramp1[0]; p->ramp = rand() & 3; if(i & 1) { p->type = pt_explode; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } else { p->type = pt_explode2; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } } } /* =============== R_ParticleExplosion2 =============== */ void R_ParticleExplosion2(vec3_t org, int32_t colorStart, int32_t colorLength) { int32_t i, j; particle_t *p; int32_t colorMod = 0; for(i = 0; i < 512; i++) { if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.3; p->color = colorStart + (colorMod % colorLength); colorMod++; p->type = pt_blob; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } } /* =============== R_BlobExplosion =============== */ void R_BlobExplosion(vec3_t org) { int32_t i, j; particle_t *p; for(i = 0 ; i < 1024 ; i++) { if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 1 + (rand() & 8) * 0.05; if(i & 1) { p->type = pt_blob; p->color = 66 + rand() % 6; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } else { p->type = pt_blob2; p->color = 150 + rand() % 6; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } } } /* =============== R_RunParticleEffect =============== */ void R_RunParticleEffect(vec3_t org, vec3_t dir, int32_t color, int32_t count) { int32_t i, j; particle_t *p; for(i = 0 ; i < count ; i++) { if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; if(count == 1024) { // rocket explosion p->die = cl.time + 5; p->color = ramp1[0]; p->ramp = rand() & 3; if(i & 1) { p->type = pt_explode; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } else { p->type = pt_explode2; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() % 32) - 16); p->vel[j] = (rand() % 512) - 256; } } } else { p->die = cl.time + 0.1 * (rand() % 5); p->color = (color & ~7) + (rand() & 7); p->type = pt_slowgrav; for(j = 0 ; j < 3 ; j++) { p->org[j] = org[j] + ((rand() & 15) - 8); p->vel[j] = dir[j] * 15; // + (rand()%300)-150; } } } } /* =============== R_LavaSplash =============== */ void R_LavaSplash(vec3_t org) { int32_t i, j, k; particle_t *p; float vel; vec3_t dir; for(i = -16 ; i < 16 ; i++) for(j = -16 ; j < 16 ; j++) for(k = 0 ; k < 1 ; k++) { if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 2 + (rand() & 31) * 0.02; p->color = 224 + (rand() & 7); p->type = pt_slowgrav; dir[0] = j * 8 + (rand() & 7); dir[1] = i * 8 + (rand() & 7); dir[2] = 256; p->org[0] = org[0] + dir[0]; p->org[1] = org[1] + dir[1]; p->org[2] = org[2] + (rand() & 63); VectorNormalize(dir); vel = 50 + (rand() & 63); VectorScale(dir, vel, p->vel); } } /* =============== R_TeleportSplash =============== */ void R_TeleportSplash(vec3_t org) { int32_t i, j, k; particle_t *p; float vel; vec3_t dir; for(i = -16 ; i < 16 ; i += 4) for(j = -16 ; j < 16 ; j += 4) for(k = -24 ; k < 32 ; k += 4) { if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; p->die = cl.time + 0.2 + (rand() & 7) * 0.02; p->color = 7 + (rand() & 7); p->type = pt_slowgrav; dir[0] = j * 8; dir[1] = i * 8; dir[2] = k * 8; p->org[0] = org[0] + i + (rand() & 3); p->org[1] = org[1] + j + (rand() & 3); p->org[2] = org[2] + k + (rand() & 3); VectorNormalize(dir); vel = 50 + (rand() & 63); VectorScale(dir, vel, p->vel); } } /* =============== R_RocketTrail FIXME -- rename function and use #defined types instead of numbers =============== */ void R_RocketTrail(vec3_t start, vec3_t end, int32_t type) { vec3_t vec; float len; int32_t j; particle_t *p; int32_t dec; static int32_t tracercount; VectorSubtract(end, start, vec); len = VectorNormalize(vec); if(type < 128) dec = 3; else { dec = 1; type -= 128; } while(len > 0) { len -= dec; if(!free_particles) return; p = free_particles; free_particles = p->next; p->next = active_particles; active_particles = p; VectorCopy(vec3_origin, p->vel); p->die = cl.time + 2; switch(type) { case 0: // rocket trail p->ramp = (rand() & 3); p->color = ramp3[(int32_t)p->ramp]; p->type = pt_fire; for(j = 0 ; j < 3 ; j++) p->org[j] = start[j] + ((rand() % 6) - 3); break; case 1: // smoke smoke p->ramp = (rand() & 3) + 2; p->color = ramp3[(int32_t)p->ramp]; p->type = pt_fire; for(j = 0 ; j < 3 ; j++) p->org[j] = start[j] + ((rand() % 6) - 3); break; case 2: // blood p->type = pt_grav; p->color = 67 + (rand() & 3); for(j = 0 ; j < 3 ; j++) p->org[j] = start[j] + ((rand() % 6) - 3); break; case 3: case 5: // tracer p->die = cl.time + 0.5; p->type = pt_static; if(type == 3) p->color = 52 + ((tracercount & 4) << 1); else p->color = 230 + ((tracercount & 4) << 1); tracercount++; VectorCopy(start, p->org); if(tracercount & 1) { p->vel[0] = 30 * vec[1]; p->vel[1] = 30 * -vec[0]; } else { p->vel[0] = 30 * -vec[1]; p->vel[1] = 30 * vec[0]; } break; case 4: // slight blood p->type = pt_grav; p->color = 67 + (rand() & 3); for(j = 0 ; j < 3 ; j++) p->org[j] = start[j] + ((rand() % 6) - 3); len -= 3; break; case 6: // voor trail p->color = 9 * 16 + 8 + (rand() & 3); p->type = pt_static; p->die = cl.time + 0.3; for(j = 0 ; j < 3 ; j++) p->org[j] = start[j] + ((rand() & 15) - 8); break; } VectorAdd(start, vec, start); } } /* =============== CL_RunParticles -- johnfitz -- all the particle behavior, separated from R_DrawParticles =============== */ void CL_RunParticles(void) { particle_t *p, *kill; int32_t i; float time1, time2, time3, dvel, frametime, grav; extern cvar_t sv_gravity; frametime = cl.time - cl.oldtime; time3 = frametime * 15; time2 = frametime * 10; time1 = frametime * 5; grav = frametime * sv_gravity.value * 0.05; dvel = 4 * frametime; for(;;) { kill = active_particles; if(kill && kill->die < cl.time) { active_particles = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } for(p = active_particles ; p ; p = p->next) { for(;;) { kill = p->next; if(kill && kill->die < cl.time) { p->next = kill->next; kill->next = free_particles; free_particles = kill; continue; } break; } p->org[0] += p->vel[0] * frametime; p->org[1] += p->vel[1] * frametime; p->org[2] += p->vel[2] * frametime; switch(p->type) { case pt_static: break; case pt_fire: p->ramp += time1; if(p->ramp >= 6) p->die = -1; else p->color = ramp3[(int32_t)p->ramp]; p->vel[2] += grav; break; case pt_explode: p->ramp += time2; if(p->ramp >= 8) p->die = -1; else p->color = ramp1[(int32_t)p->ramp]; for(i = 0 ; i < 3 ; i++) p->vel[i] += p->vel[i] * dvel; p->vel[2] -= grav; break; case pt_explode2: p->ramp += time3; if(p->ramp >= 8) p->die = -1; else p->color = ramp2[(int32_t)p->ramp]; for(i = 0 ; i < 3 ; i++) p->vel[i] -= p->vel[i] * frametime; p->vel[2] -= grav; break; case pt_blob: for(i = 0 ; i < 3 ; i++) p->vel[i] += p->vel[i] * dvel; p->vel[2] -= grav; break; case pt_blob2: for(i = 0 ; i < 2 ; i++) p->vel[i] -= p->vel[i] * dvel; p->vel[2] -= grav; break; case pt_grav: case pt_slowgrav: p->vel[2] -= grav; break; } } } /* =============== R_DrawParticles -- johnfitz -- moved all non-drawing code to CL_RunParticles =============== */ void R_DrawParticles(void) { particle_t *p; float scale; vec3_t up, right, p_up, p_right, p_upright; //johnfitz -- p_ vectors GLubyte color[4], *c; //johnfitz -- particle transparency extern cvar_t r_particles; //johnfitz //float alpha; //johnfitz -- particle transparency if(!r_particles.value) return; //ericw -- avoid empty glBegin(),glEnd() pair below; causes issues on AMD if(!active_particles) return; VectorScale(vup, 1.5, up); VectorScale(vright, 1.5, right); GL_Bind(particletexture); glEnable(GL_BLEND); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glDepthMask(GL_FALSE); //johnfitz -- fix for particle z-buffer bug if(r_quadparticles.value) //johnitz -- quads save fillrate { glBegin(GL_QUADS); for(p = active_particles ; p ; p = p->next) { // hack a scale up to keep particles from disapearing scale = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2]; if(scale < 20) scale = 1 + 0.08; //johnfitz -- added .08 to be consistent else scale = 1 + scale * 0.004; scale /= 2.0; //quad is half the size of triangle scale *= texturescalefactor; //johnfitz -- compensate for apparent size of different particle textures //johnfitz -- particle transparency and fade out c = (GLubyte *) &d_8to24table[(int32_t)p->color]; color[0] = c[0]; color[1] = c[1]; color[2] = c[2]; //alpha = CLAMP(0, p->die + 0.5 - cl.time, 1); color[3] = 255; //(int32_t)(alpha * 255); glColor4ubv(color); //johnfitz glTexCoord2f(0, 0); glVertex3fv(p->org); glTexCoord2f(0.5, 0); VectorMA(p->org, scale, up, p_up); glVertex3fv(p_up); glTexCoord2f(0.5, 0.5); VectorMA(p_up, scale, right, p_upright); glVertex3fv(p_upright); glTexCoord2f(0, 0.5); VectorMA(p->org, scale, right, p_right); glVertex3fv(p_right); rs_particles++; //johnfitz //FIXME: just use r_numparticles } glEnd(); } else //johnitz -- triangles save verts { glBegin(GL_TRIANGLES); for(p = active_particles ; p ; p = p->next) { // hack a scale up to keep particles from disapearing scale = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2]; if(scale < 20) scale = 1 + 0.08; //johnfitz -- added .08 to be consistent else scale = 1 + scale * 0.004; scale *= texturescalefactor; //johnfitz -- compensate for apparent size of different particle textures //johnfitz -- particle transparency and fade out c = (GLubyte *) &d_8to24table[(int32_t)p->color]; color[0] = c[0]; color[1] = c[1]; color[2] = c[2]; //alpha = CLAMP(0, p->die + 0.5 - cl.time, 1); color[3] = 255; //(int32_t)(alpha * 255); glColor4ubv(color); //johnfitz glTexCoord2f(0, 0); glVertex3fv(p->org); glTexCoord2f(1, 0); VectorMA(p->org, scale, up, p_up); glVertex3fv(p_up); glTexCoord2f(0, 1); VectorMA(p->org, scale, right, p_right); glVertex3fv(p_right); rs_particles++; //johnfitz //FIXME: just use r_numparticles } glEnd(); } glDepthMask(GL_TRUE); //johnfitz -- fix for particle z-buffer bug glDisable(GL_BLEND); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor3f(1, 1, 1); } /* =============== R_DrawParticles_ShowTris -- johnfitz =============== */ void R_DrawParticles_ShowTris(void) { particle_t *p; float scale; vec3_t up, right, p_up, p_right, p_upright; extern cvar_t r_particles; if(!r_particles.value) return; VectorScale(vup, 1.5, up); VectorScale(vright, 1.5, right); if(r_quadparticles.value) { for(p = active_particles ; p ; p = p->next) { glBegin(GL_TRIANGLE_FAN); // hack a scale up to keep particles from disapearing scale = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2]; if(scale < 20) scale = 1 + 0.08; //johnfitz -- added .08 to be consistent else scale = 1 + scale * 0.004; scale /= 2.0; //quad is half the size of triangle scale *= texturescalefactor; //compensate for apparent size of different particle textures glVertex3fv(p->org); VectorMA(p->org, scale, up, p_up); glVertex3fv(p_up); VectorMA(p_up, scale, right, p_upright); glVertex3fv(p_upright); VectorMA(p->org, scale, right, p_right); glVertex3fv(p_right); glEnd(); } } else { glBegin(GL_TRIANGLES); for(p = active_particles ; p ; p = p->next) { // hack a scale up to keep particles from disapearing scale = (p->org[0] - r_origin[0]) * vpn[0] + (p->org[1] - r_origin[1]) * vpn[1] + (p->org[2] - r_origin[2]) * vpn[2]; if(scale < 20) scale = 1 + 0.08; //johnfitz -- added .08 to be consistent else scale = 1 + scale * 0.004; scale *= texturescalefactor; //compensate for apparent size of different particle textures glVertex3fv(p->org); VectorMA(p->org, scale, up, p_up); glVertex3fv(p_up); VectorMA(p->org, scale, right, p_right); glVertex3fv(p_right); } glEnd(); } }