//========= Copyright © 1996-2002, Valve LLC, All rights reserved. ============ // // Purpose: // // $NoKeywords: $ //============================================================================= #include #include "hud.h" #include "cl_util.h" #include "const.h" #include "com_model.h" #include "studio_util.h" /* ==================== AngleMatrix ==================== */ void AngleMatrix (const float *angles, float (*matrix)[4] ) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); // matrix = (YAW * PITCH) * ROLL matrix[0][0] = cp*cy; matrix[1][0] = cp*sy; matrix[2][0] = -sp; matrix[0][1] = sr*sp*cy+cr*-sy; matrix[1][1] = sr*sp*sy+cr*cy; matrix[2][1] = sr*cp; matrix[0][2] = (cr*sp*cy+-sr*-sy); matrix[1][2] = (cr*sp*sy+-sr*cy); matrix[2][2] = cr*cp; matrix[0][3] = 0.0; matrix[1][3] = 0.0; matrix[2][3] = 0.0; } /* ==================== VectorCompare ==================== */ int VectorCompare (const float *v1, const float *v2) { int i; for (i=0 ; i<3 ; i++) if (v1[i] != v2[i]) return 0; return 1; } /* ==================== CrossProduct ==================== */ void CrossProduct (const float *v1, const float *v2, float *cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } /* ==================== VectorTransform ==================== */ void VectorTransform (const float *in1, float in2[3][4], float *out) { out[0] = DotProduct(in1, in2[0]) + in2[0][3]; out[1] = DotProduct(in1, in2[1]) + in2[1][3]; out[2] = DotProduct(in1, in2[2]) + in2[2][3]; } /* ================ ConcatTransforms ================ */ void ConcatTransforms (float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } // angles index are not the same as ROLL, PITCH, YAW /* ==================== AngleQuaternion ==================== */ void AngleQuaternion( float *angles, vec4_t quaternion ) { float angle; float sr, sp, sy, cr, cp, cy; // FIXME: rescale the inputs to 1/2 angle angle = angles[2] * 0.5; sy = sin(angle); cy = cos(angle); angle = angles[1] * 0.5; sp = sin(angle); cp = cos(angle); angle = angles[0] * 0.5; sr = sin(angle); cr = cos(angle); quaternion[0] = sr*cp*cy-cr*sp*sy; // X quaternion[1] = cr*sp*cy+sr*cp*sy; // Y quaternion[2] = cr*cp*sy-sr*sp*cy; // Z quaternion[3] = cr*cp*cy+sr*sp*sy; // W } /* ==================== QuaternionSlerp ==================== */ void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt ) { int i; float omega, cosom, sinom, sclp, sclq; // decide if one of the quaternions is backwards float a = 0; float b = 0; for (i = 0; i < 4; i++) { a += (p[i]-q[i])*(p[i]-q[i]); b += (p[i]+q[i])*(p[i]+q[i]); } if (a > b) { for (i = 0; i < 4; i++) { q[i] = -q[i]; } } cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3]; if ((1.0 + cosom) > 0.000001) { if ((1.0 - cosom) > 0.000001) { omega = acos( cosom ); sinom = sin( omega ); sclp = sin( (1.0 - t)*omega) / sinom; sclq = sin( t*omega ) / sinom; } else { sclp = 1.0 - t; sclq = t; } for (i = 0; i < 4; i++) { qt[i] = sclp * p[i] + sclq * q[i]; } } else { qt[0] = -q[1]; qt[1] = q[0]; qt[2] = -q[3]; qt[3] = q[2]; sclp = sin( (1.0 - t) * (0.5 * M_PI)); sclq = sin( t * (0.5 * M_PI)); for (i = 0; i < 3; i++) { qt[i] = sclp * p[i] + sclq * qt[i]; } } } /* ==================== QuaternionMatrix ==================== */ void QuaternionMatrix( vec4_t quaternion, float (*matrix)[4] ) { matrix[0][0] = 1.0 - 2.0 * quaternion[1] * quaternion[1] - 2.0 * quaternion[2] * quaternion[2]; matrix[1][0] = 2.0 * quaternion[0] * quaternion[1] + 2.0 * quaternion[3] * quaternion[2]; matrix[2][0] = 2.0 * quaternion[0] * quaternion[2] - 2.0 * quaternion[3] * quaternion[1]; matrix[0][1] = 2.0 * quaternion[0] * quaternion[1] - 2.0 * quaternion[3] * quaternion[2]; matrix[1][1] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[2] * quaternion[2]; matrix[2][1] = 2.0 * quaternion[1] * quaternion[2] + 2.0 * quaternion[3] * quaternion[0]; matrix[0][2] = 2.0 * quaternion[0] * quaternion[2] + 2.0 * quaternion[3] * quaternion[1]; matrix[1][2] = 2.0 * quaternion[1] * quaternion[2] - 2.0 * quaternion[3] * quaternion[0]; matrix[2][2] = 1.0 - 2.0 * quaternion[0] * quaternion[0] - 2.0 * quaternion[1] * quaternion[1]; } /* ==================== MatrixCopy ==================== */ void MatrixCopy( float in[3][4], float out[3][4] ) { memcpy( out, in, sizeof( float ) * 3 * 4 ); }