// nav_path.h // Navigation Path encapsulation // Author: Michael S. Booth (mike@turtlerockstudios.com), November 2003 #ifndef _NAV_PATH_H_ #define _NAV_PATH_H_ #pragma warning( disable : 4530 ) // STL uses exceptions, but we are not compiling with them - ignore warning #include "nav_area.h" #include "bot_util.h" class CImprov; //-------------------------------------------------------------------------------------------------------- /** * The CNavPath class encapsulates a path through space */ class CNavPath { public: CNavPath( void ) { m_segmentCount = 0; } struct PathSegment { CNavArea *area; ///< the area along the path NavTraverseType how; ///< how to enter this area from the previous one Vector pos; ///< our movement goal position at this point in the path const CNavLadder *ladder; ///< if "how" refers to a ladder, this is it }; const PathSegment * operator[] ( int i ) { return (i >= 0 && i < m_segmentCount) ? &m_path[i] : NULL; } int GetSegmentCount( void ) const { return m_segmentCount; } const Vector &GetEndpoint( void ) const { return m_path[ m_segmentCount-1 ].pos; } bool IsAtEnd( const Vector &pos ) const; ///< return true if position is at the end of the path float GetLength( void ) const; ///< return length of path from start to finish bool GetPointAlongPath( float distAlong, Vector *pointOnPath ) const; ///< return point a given distance along the path - if distance is out of path bounds, point is clamped to start/end /// return the node index closest to the given distance along the path without going over - returns (-1) if error int GetSegmentIndexAlongPath( float distAlong ) const; bool IsValid( void ) const { return (m_segmentCount > 0); } void Invalidate( void ) { m_segmentCount = 0; } void Draw( void ); ///< draw the path for debugging /// compute closest point on path to given point bool FindClosestPointOnPath( const Vector *worldPos, int startIndex, int endIndex, Vector *close ) const; void Optimize( void ); /** * Compute shortest path from 'start' to 'goal' via A* algorithm */ template< typename CostFunctor > bool Compute( const Vector *start, const Vector *goal, CostFunctor &costFunc ) { Invalidate(); if (start == NULL || goal == NULL) return false; CNavArea *startArea = TheNavAreaGrid.GetNearestNavArea( start ); if (startArea == NULL) return false; CNavArea *goalArea = TheNavAreaGrid.GetNavArea( goal ); // if we are already in the goal area, build trivial path if (startArea == goalArea) { BuildTrivialPath( start, goal ); return true; } // make sure path end position is on the ground Vector pathEndPosition = *goal; if (goalArea) pathEndPosition.z = goalArea->GetZ( &pathEndPosition ); else GetGroundHeight( &pathEndPosition, &pathEndPosition.z ); // // Compute shortest path to goal // CNavArea *closestArea; bool pathToGoalExists = NavAreaBuildPath( startArea, goalArea, goal, costFunc, &closestArea ); CNavArea *effectiveGoalArea = (pathToGoalExists) ? goalArea : closestArea; // // Build path by following parent links // // get count int count = 0; CNavArea *area; for( area = effectiveGoalArea; area; area = area->GetParent() ) ++count; // save room for endpoint if (count > MAX_PATH_SEGMENTS-1) count = MAX_PATH_SEGMENTS-1; if (count == 0) return false; if (count == 1) { BuildTrivialPath( start, goal ); return true; } // build path m_segmentCount = count; for( area = effectiveGoalArea; count && area; area = area->GetParent() ) { --count; m_path[ count ].area = area; m_path[ count ].how = area->GetParentHow(); } // compute path positions if (ComputePathPositions() == false) { //PrintIfWatched( "Error building path\n" ); Invalidate(); return false; } // append path end position m_path[ m_segmentCount ].area = effectiveGoalArea; m_path[ m_segmentCount ].pos = pathEndPosition; m_path[ m_segmentCount ].ladder = NULL; m_path[ m_segmentCount ].how = NUM_TRAVERSE_TYPES; ++m_segmentCount; return true; } private: enum { MAX_PATH_SEGMENTS = 256 }; PathSegment m_path[ MAX_PATH_SEGMENTS ]; int m_segmentCount; bool ComputePathPositions( void ); ///< determine actual path positions bool BuildTrivialPath( const Vector *start, const Vector *goal ); ///< utility function for when start and goal are in the same area int FindNextOccludedNode( int anchor ); ///< used by Optimize() }; //-------------------------------------------------------------------------------------------------------- /** * Monitor improv movement and determine if it becomes stuck */ class CStuckMonitor { public: CStuckMonitor( void ); void Reset( void ); void Update( CImprov *improv ); bool IsStuck( void ) const { return m_isStuck; } float GetDuration( void ) const { return (m_isStuck) ? m_stuckTimer.GetElapsedTime() : 0.0f; } private: bool m_isStuck; ///< if true, we are stuck Vector m_stuckSpot; ///< the location where we became stuck IntervalTimer m_stuckTimer; ///< how long we have been stuck enum { MAX_VEL_SAMPLES = 5 }; float m_avgVel[ MAX_VEL_SAMPLES ]; int m_avgVelIndex; int m_avgVelCount; Vector m_lastCentroid; float m_lastTime; }; //-------------------------------------------------------------------------------------------------------- /** * The CNavPathFollower class implements path following behavior */ class CNavPathFollower { public: CNavPathFollower( void ); void SetImprov( CImprov *improv ) { m_improv = improv; } void SetPath( CNavPath *path ) { m_path = path; } void Reset( void ); #define DONT_AVOID_OBSTACLES false void Update( float deltaT, bool avoidObstacles = true ); ///< move improv along path void Debug( bool status ) { m_isDebug = status; } ///< turn debugging on/off bool IsStuck( void ) const { return m_stuckMonitor.IsStuck(); } ///< return true if improv is stuck void ResetStuck( void ) { m_stuckMonitor.Reset(); } float GetStuckDuration( void ) const { return m_stuckMonitor.GetDuration(); } ///< return how long we've been stuck void FeelerReflexAdjustment( Vector *goalPosition, float height = -1.0f ); ///< adjust goal position if "feelers" are touched private: CImprov *m_improv; ///< who is doing the path following CNavPath *m_path; ///< the path being followed int m_segmentIndex; ///< the point on the path the improv is moving towards int m_behindIndex; ///< index of the node on the path just behind us Vector m_goal; ///< last computed follow goal bool m_isLadderStarted; bool m_isDebug; int FindOurPositionOnPath( Vector *close, bool local ) const; ///< return the closest point to our current position on current path int FindPathPoint( float aheadRange, Vector *point, int *prevIndex ); ///< compute a point a fixed distance ahead along our path. CStuckMonitor m_stuckMonitor; }; #endif // _NAV_PATH_H_