//========= Copyright © 1996-2002, Valve LLC, All rights reserved. ============ // // Purpose: // // $NoKeywords: $ //============================================================================= #include "light.h" extern qboolean hicolor; extern qboolean clamp192; /* ============ CastRay Returns the distance between the points, or -1 if blocked ============= */ vec_t CastRay (vec3_t p1, vec3_t p2) { int i; vec_t t; qboolean trace; trace = TestLine (p1, p2); if (!trace) return -1; // ray was blocked t = 0; for (i=0 ; i< 3 ; i++) t += (p2[i]-p1[i]) * (p2[i]-p1[i]); if (t == 0) t = 1; // don't blow up... return sqrt(t); } /* =============================================================================== SAMPLE POINT DETERMINATION void SetupBlock (dface_t *f) Returns with surfpt[] set This is a little tricky because the lightmap covers more area than the face. If done in the straightforward fashion, some of the sample points will be inside walls or on the other side of walls, causing false shadows and light bleeds. To solve this, I only consider a sample point valid if a line can be drawn between it and the exact midpoint of the face. If invalid, it is adjusted towards the center until it is valid. (this doesn't completely work) =============================================================================== */ #define SINGLEMAP (18*18*4) typedef struct { vec3_t lightmaps[MAXLIGHTMAPS][SINGLEMAP]; int numlightstyles; vec_t *light; vec_t facedist; vec3_t facenormal; int numsurfpt; vec3_t surfpt[SINGLEMAP]; vec3_t texorg; vec3_t worldtotex[2]; // s = (world - texorg) . worldtotex[0] vec3_t textoworld[2]; // world = texorg + s * textoworld[0] vec_t exactmins[2], exactmaxs[2]; int texmins[2], texsize[2]; int lightstyles[256]; int surfnum; dface_t *face; } lightinfo_t; /* ================ CalcFaceVectors Fills in texorg, worldtotex. and textoworld ================ */ void CalcFaceVectors (lightinfo_t *l) { texinfo_t *tex; int i, j; vec3_t texnormal; float distscale; vec_t dist, len; tex = &texinfo[l->face->texinfo]; // convert from float to vec_t for (i=0 ; i<2 ; i++) for (j=0 ; j<3 ; j++) l->worldtotex[i][j] = tex->vecs[i][j]; // calculate a normal to the texture axis. points can be moved along this // without changing their S/T texnormal[0] = tex->vecs[1][1]*tex->vecs[0][2] - tex->vecs[1][2]*tex->vecs[0][1]; texnormal[1] = tex->vecs[1][2]*tex->vecs[0][0] - tex->vecs[1][0]*tex->vecs[0][2]; texnormal[2] = tex->vecs[1][0]*tex->vecs[0][1] - tex->vecs[1][1]*tex->vecs[0][0]; VectorNormalize (texnormal); // flip it towards plane normal distscale = DotProduct (texnormal, l->facenormal); if (!distscale) Error ("Texture axis perpendicular to face"); if (distscale < 0) { distscale = -distscale; VectorSubtract (vec3_origin, texnormal, texnormal); } // distscale is the ratio of the distance along the texture normal to // the distance along the plane normal distscale = 1/distscale; for (i=0 ; i<2 ; i++) { len = VectorLength (l->worldtotex[i]); dist = DotProduct (l->worldtotex[i], l->facenormal); dist *= distscale; VectorMA (l->worldtotex[i], -dist, texnormal, l->textoworld[i]); VectorScale (l->textoworld[i], (1/len)*(1/len), l->textoworld[i]); } // calculate texorg on the texture plane for (i=0 ; i<3 ; i++) l->texorg[i] = -tex->vecs[0][3]* l->textoworld[0][i] - tex->vecs[1][3] * l->textoworld[1][i]; // project back to the face plane dist = DotProduct (l->texorg, l->facenormal) - l->facedist - 1; dist *= distscale; VectorMA (l->texorg, -dist, texnormal, l->texorg); } /* ================ CalcFaceExtents Fills in s->texmins[] and s->texsize[] also sets exactmins[] and exactmaxs[] ================ */ void CalcFaceExtents (lightinfo_t *l) { dface_t *s; vec_t mins[2], maxs[2], val; int i,j, e; dvertex_t *v; texinfo_t *tex; s = l->face; mins[0] = mins[1] = 999999; maxs[0] = maxs[1] = -99999; tex = &texinfo[s->texinfo]; for (i=0 ; inumedges ; i++) { e = dsurfedges[s->firstedge+i]; if (e >= 0) v = dvertexes + dedges[e].v[0]; else v = dvertexes + dedges[-e].v[1]; for (j=0 ; j<2 ; j++) { val = v->point[0] * tex->vecs[j][0] + v->point[1] * tex->vecs[j][1] + v->point[2] * tex->vecs[j][2] + tex->vecs[j][3]; if (val < mins[j]) mins[j] = val; if (val > maxs[j]) maxs[j] = val; } } for (i=0 ; i<2 ; i++) { l->exactmins[i] = mins[i]; l->exactmaxs[i] = maxs[i]; mins[i] = floor(mins[i]/16); maxs[i] = ceil(maxs[i]/16); l->texmins[i] = mins[i]; l->texsize[i] = maxs[i] - mins[i]; if (l->texsize[i] > 17) Error ("Bad surface extents"); } } /* ================= CalcPoints For each texture aligned grid point, back project onto the plane to get the world xyz value of the sample point ================= */ int c_bad; void CalcPoints (lightinfo_t *l) { int i; int s, t, j; int w, h, step; vec_t starts, startt, us, ut; vec_t *surf; vec_t mids, midt; vec3_t facemid, move; // // fill in surforg // the points are biased towards the center of the surface // to help avoid edge cases just inside walls // surf = l->surfpt[0]; mids = (l->exactmaxs[0] + l->exactmins[0])/2; midt = (l->exactmaxs[1] + l->exactmins[1])/2; for (j=0 ; j<3 ; j++) facemid[j] = l->texorg[j] + l->textoworld[0][j]*mids + l->textoworld[1][j]*midt; if (extrasamples) { // extra filtering h = (l->texsize[1]+1)*2; w = (l->texsize[0]+1)*2; starts = (l->texmins[0]-0.5)*16; startt = (l->texmins[1]-0.5)*16; step = 8; } else { h = l->texsize[1]+1; w = l->texsize[0]+1; starts = l->texmins[0]*16; startt = l->texmins[1]*16; step = 16; } l->numsurfpt = w * h; for (t=0 ; ttexorg[j] + l->textoworld[0][j]*us + l->textoworld[1][j]*ut; if (CastRay (facemid, surf) != -1) break; // got it if (i & 1) { if (us > mids) { us -= 8; if (us < mids) us = mids; } else { us += 8; if (us > mids) us = mids; } } else { if (ut > midt) { ut -= 8; if (ut < midt) ut = midt; } else { ut += 8; if (ut > midt) ut = midt; } } // move surf 8 pixels towards the center VectorSubtract (facemid, surf, move); VectorNormalize (move); VectorMA (surf, 8, move, surf); } if (i == 2) c_bad++; } } } /* =============================================================================== FACE LIGHTING =============================================================================== */ int c_culldistplane, c_proper; /* ================ SingleLightFace ================ */ void SingleLightFace (lightentity_t *light, lightinfo_t *l) { vec_t dist; vec3_t incoming; vec_t angle; vec_t add; vec_t *surf; qboolean hit; int mapnum; int size; int c, i; vec3_t rel; vec3_t spotvec; vec_t falloff; vec3_t *lightsamp; float intensity; VectorSubtract (light->origin, bsp_origin, rel); dist = scaledist * (DotProduct (rel, l->facenormal) - l->facedist); // don't bother with lights behind the surface if (dist <= 0) return; // don't bother with light too far away intensity = ( light->light[ 0 ] + light->light[ 1 ] + light->light[ 2 ] ) / 3.0; if( dist > intensity ) { c_culldistplane++; return; } if (light->targetent) { VectorSubtract (light->targetorigin, light->origin, spotvec); VectorNormalize (spotvec); if (!light->angle) falloff = -cos(20*Q_PI/180); else falloff = -cos(light->angle/2*Q_PI/180); } else falloff = 0; // shut up compiler warnings mapnum = 0; for (mapnum=0 ; mapnumnumlightstyles ; mapnum++) if (l->lightstyles[mapnum] == light->style) break; lightsamp = l->lightmaps[mapnum]; if (mapnum == l->numlightstyles) { // init a new light map if (mapnum == MAXLIGHTMAPS) { printf ("WARNING: Too many light styles on a face\n"); return; } size = (l->texsize[1]+1)*(l->texsize[0]+1); for (i=0 ; isurfpt[0]; for (c=0 ; cnumsurfpt ; c++, surf+=3) { dist = CastRay(light->origin, surf)*scaledist; if (dist < 0) continue; // light doesn't reach VectorSubtract (light->origin, surf, incoming); VectorNormalize (incoming); angle = DotProduct (incoming, l->facenormal); if (light->targetent) { // spotlight cutoff if (DotProduct (spotvec, incoming) > falloff) continue; } angle = (1.0-scalecos) + scalecos*angle; for( i=0; i<3; i++ ) { add = light->light[i] - dist; add *= angle; if (add < 0) continue; lightsamp[c][i] += add; } // check intensity intensity = ( lightsamp[ c ][ 0 ] + lightsamp[ c ][ 1 ] + lightsamp[ c ][ 2 ] ) / 3.0; if( intensity > 1 ) // ignore real tiny lights hit = true; } if (mapnum == l->numlightstyles && hit) { l->lightstyles[mapnum] = light->style; l->numlightstyles++; // the style has some real data now } } /* ============ FixMinlight ============ */ void FixMinlight (lightinfo_t *l) { int i, j; float minlight; minlight = minlights[l->surfnum]; // if minlight is set, there must be a style 0 light map if (!minlight) return; for (i=0 ; i< l->numlightstyles ; i++) { if (l->lightstyles[i] == 0) break; } if (i == l->numlightstyles) { if (l->numlightstyles == MAXLIGHTMAPS) return; // oh well.. for (j=0 ; jnumsurfpt ; j++) { l->lightmaps[i][j][0] = minlight; l->lightmaps[i][j][1] = minlight; l->lightmaps[i][j][2] = minlight; } l->lightstyles[i] = 0; l->numlightstyles++; } else { for (j=0 ; jnumsurfpt ; j++) { float intensity = ( l->lightmaps[i][j][0] + l->lightmaps[i][j][1] + l->lightmaps[i][j][2] ) / 3.0; if ( intensity < minlight ) { l->lightmaps[i][j][0] = minlight; l->lightmaps[i][j][1] = minlight; l->lightmaps[i][j][2] = minlight; } } } } /* ============ LightFace ============ */ void LightFace (int surfnum) { dface_t *f; lightinfo_t l; int s, t; int i,j,c; vec3_t total; int size; int lightmapwidth, lightmapsize; byte *out; vec3_t *light; int w, h; int clamp = 192; float clampfactor = 0.75; if ( !clamp192 ) { clamp = 255; clampfactor = 1.0; } f = dfaces + surfnum; // // some surfaces don't need lightmaps // f->lightofs = -1; for (j=0 ; jstyles[j] = 255; if ( texinfo[f->texinfo].flags & TEX_SPECIAL) { // non-lit texture return; } memset (&l, 0, sizeof(l)); l.surfnum = surfnum; l.face = f; // // rotate plane // VectorCopy (dplanes[f->planenum].normal, l.facenormal); l.facedist = dplanes[f->planenum].dist; if (f->side) { VectorSubtract (vec3_origin, l.facenormal, l.facenormal); l.facedist = -l.facedist; } CalcFaceVectors (&l); CalcFaceExtents (&l); CalcPoints (&l); lightmapwidth = l.texsize[0]+1; size = lightmapwidth*(l.texsize[1]+1); if (size > SINGLEMAP) Error ("Bad lightmap size"); for (i=0 ; istyles[i] = l.lightstyles[i]; if( hicolor ) lightmapsize = size*l.numlightstyles*3; else lightmapsize = size * l.numlightstyles; out = GetFileSpace (lightmapsize); f->lightofs = out - filebase; // extra filtering h = (l.texsize[1]+1)*2; w = (l.texsize[0]+1)*2; for (i=0 ; i< l.numlightstyles ; i++) { if (l.lightstyles[i] == 0xff) Error ("Wrote empty lightmap"); light = l.lightmaps[i]; c = 0; for (t=0 ; t<=l.texsize[1] ; t++) { for (s=0 ; s<=l.texsize[0] ; s++, c++) { if (extrasamples) { #ifdef OLD_CODE // filtered sample VectorCopy( light[t*2*w+s*2], total ); VectorAdd( total, light[t*2*w+s*2+1], total ); VectorAdd( total, light[(t*2+1)*w+s*2], total ); VectorAdd( total, light[(t*2+1)*w+s*2+1], total ); VectorScale( total, 0.25, total ); #else int u, v; float weight[3][3] = { { 5, 9, 5 }, { 9, 16, 9 }, { 5, 9, 5 }, }; float divisor = 0.0; VectorFill(total,0); for ( u = 0; u < 3; u++ ) { for ( v = 0; v < 3; v++ ) { if ( s+u-2>=0 && t+v-1>=0 && s+u-1 <= w && t+v-1 <= h) { vec3_t sample; VectorScale( light[((t*2)+(v-1))*w + ((s*2)+(u-1))], weight[u][v], sample ); divisor += weight[u][v]; VectorAdd( total, sample, total ); } } } #endif if ( divisor > 1.0 ) VectorScale( total, 1/divisor, total ); total[0] = max(total[0],0.0); total[1] = max(total[1],0.0); total[2] = max(total[2],0.0); } else VectorCopy( light[ c ], total ); // Scale VectorScale( total, rangescale, total ); // Clamp if( hicolor ) { for( j=0; j<3; j++ ) { total[ j ] *= clampfactor; if( total[j] > clamp) total[j] = clamp; else if (total[j] < 0) Error ("light < 0"); *out++ = (byte) total[j]; } } else { int intensity = total[ 0 ] + total[ 1 ] + total[ 2 ]; if( intensity > 255 ) intensity = 255; else if( intensity < 0 ) Error( "light < 0" ); *out++ = (byte) intensity; } } } } }