/*** * * Copyright (c) 1996-2001, Valve LLC. All rights reserved. * * This product contains software technology licensed from Id * Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc. * All Rights Reserved. * * Use, distribution, and modification of this source code and/or resulting * object code is restricted to non-commercial enhancements to products from * Valve LLC. All other use, distribution, or modification is prohibited * without written permission from Valve LLC. * ****/ /* h_ai.cpp - halflife specific ai code */ #include "extdll.h" #include "util.h" #include "cbase.h" #include "monsters.h" #include "game.h" #define NUM_LATERAL_CHECKS 13 // how many checks are made on each side of a monster looking for lateral cover #define NUM_LATERAL_LOS_CHECKS 6 // how many checks are made on each side of a monster looking for lateral cover //float flRandom = RANDOM_FLOAT(0,1); DLL_GLOBAL BOOL g_fDrawLines = FALSE; //========================================================= // // AI UTILITY FUNCTIONS // // !!!UNDONE - move CBaseMonster functions to monsters.cpp //========================================================= //========================================================= // FBoxVisible - a more accurate ( and slower ) version // of FVisible. // // !!!UNDONE - make this CBaseMonster? //========================================================= BOOL FBoxVisible ( entvars_t *pevLooker, entvars_t *pevTarget, Vector &vecTargetOrigin, float flSize ) { // don't look through water if ((pevLooker->waterlevel != 3 && pevTarget->waterlevel == 3) || (pevLooker->waterlevel == 3 && pevTarget->waterlevel == 0)) return FALSE; TraceResult tr; Vector vecLookerOrigin = pevLooker->origin + pevLooker->view_ofs;//look through the monster's 'eyes' for (int i = 0; i < 5; i++) { Vector vecTarget = pevTarget->origin; vecTarget.x += RANDOM_FLOAT( pevTarget->mins.x + flSize, pevTarget->maxs.x - flSize); vecTarget.y += RANDOM_FLOAT( pevTarget->mins.y + flSize, pevTarget->maxs.y - flSize); vecTarget.z += RANDOM_FLOAT( pevTarget->mins.z + flSize, pevTarget->maxs.z - flSize); UTIL_TraceLine(vecLookerOrigin, vecTarget, ignore_monsters, ignore_glass, ENT(pevLooker)/*pentIgnore*/, &tr); if (tr.flFraction == 1.0) { vecTargetOrigin = vecTarget; return TRUE;// line of sight is valid. } } return FALSE;// Line of sight is not established } // // VecCheckToss - returns the velocity at which an object should be lobbed from vecspot1 to land near vecspot2. // returns g_vecZero if toss is not feasible. // Vector VecCheckToss ( entvars_t *pev, const Vector &vecSpot1, Vector vecSpot2, float flGravityAdj ) { TraceResult tr; Vector vecMidPoint;// halfway point between Spot1 and Spot2 Vector vecApex;// highest point Vector vecScale; Vector vecGrenadeVel; Vector vecTemp; float flGravity = g_psv_gravity->value * flGravityAdj; if (vecSpot2.z - vecSpot1.z > 500) { // to high, fail return g_vecZero; } UTIL_MakeVectors (pev->angles); // toss a little bit to the left or right, not right down on the enemy's bean (head). vecSpot2 = vecSpot2 + gpGlobals->v_right * ( RANDOM_FLOAT(-8,8) + RANDOM_FLOAT(-16,16) ); vecSpot2 = vecSpot2 + gpGlobals->v_forward * ( RANDOM_FLOAT(-8,8) + RANDOM_FLOAT(-16,16) ); // calculate the midpoint and apex of the 'triangle' // UNDONE: normalize any Z position differences between spot1 and spot2 so that triangle is always RIGHT // How much time does it take to get there? // get a rough idea of how high it can be thrown vecMidPoint = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5; UTIL_TraceLine(vecMidPoint, vecMidPoint + Vector(0,0,500), ignore_monsters, ENT(pev), &tr); vecMidPoint = tr.vecEndPos; // (subtract 15 so the grenade doesn't hit the ceiling) vecMidPoint.z -= 15; if (vecMidPoint.z < vecSpot1.z || vecMidPoint.z < vecSpot2.z) { // to not enough space, fail return g_vecZero; } // How high should the grenade travel to reach the apex float distance1 = (vecMidPoint.z - vecSpot1.z); float distance2 = (vecMidPoint.z - vecSpot2.z); // How long will it take for the grenade to travel this distance float time1 = sqrt( distance1 / (0.5 * flGravity) ); float time2 = sqrt( distance2 / (0.5 * flGravity) ); if (time1 < 0.1) { // too close return g_vecZero; } // how hard to throw sideways to get there in time. vecGrenadeVel = (vecSpot2 - vecSpot1) / (time1 + time2); // how hard upwards to reach the apex at the right time. vecGrenadeVel.z = flGravity * time1; // find the apex vecApex = vecSpot1 + vecGrenadeVel * time1; vecApex.z = vecMidPoint.z; UTIL_TraceLine(vecSpot1, vecApex, dont_ignore_monsters, ENT(pev), &tr); if (tr.flFraction != 1.0) { // fail! return g_vecZero; } // UNDONE: either ignore monsters or change it to not care if we hit our enemy UTIL_TraceLine(vecSpot2, vecApex, ignore_monsters, ENT(pev), &tr); if (tr.flFraction != 1.0) { // fail! return g_vecZero; } return vecGrenadeVel; } // // VecCheckThrow - returns the velocity vector at which an object should be thrown from vecspot1 to hit vecspot2. // returns g_vecZero if throw is not feasible. // Vector VecCheckThrow ( entvars_t *pev, const Vector &vecSpot1, Vector vecSpot2, float flSpeed, float flGravityAdj ) { float flGravity = g_psv_gravity->value * flGravityAdj; Vector vecGrenadeVel = (vecSpot2 - vecSpot1); // throw at a constant time float time = vecGrenadeVel.Length( ) / flSpeed; vecGrenadeVel = vecGrenadeVel * (1.0 / time); // adjust upward toss to compensate for gravity loss vecGrenadeVel.z += flGravity * time * 0.5; Vector vecApex = vecSpot1 + (vecSpot2 - vecSpot1) * 0.5; vecApex.z += 0.5 * flGravity * (time * 0.5) * (time * 0.5); TraceResult tr; UTIL_TraceLine(vecSpot1, vecApex, dont_ignore_monsters, ENT(pev), &tr); if (tr.flFraction != 1.0) { // fail! return g_vecZero; } UTIL_TraceLine(vecSpot2, vecApex, ignore_monsters, ENT(pev), &tr); if (tr.flFraction != 1.0) { // fail! return g_vecZero; } return vecGrenadeVel; }